

	
 	
 	
 	
	
 	
	
 	Home
	Tools	Malybuzz
	peepdf

	Pub	Advisories
	Exploits
	Articles
	Presentations

	Var	Scripts

	About

	

 Home » Blog » Quick analysis of the CVE-2013-2729 obfuscated exploits

 	
 Quick analysis of the CVE-2013-2729 obfuscated exploits

 	Analysis
	Dyre
	Javascript
	Malware
	PDF
	peepdf
	Shellcode
	Vulnerabilities

 Some months ago I analyzed some PDF exploits that I received via SPAM mails. They contained the vulnerability CVE-2013-2729 leading to a ZeuS-P2P / Gameover sample. Back in June I received more PDF exploits, containing the same vulnerability, but in these cases it was a bit more difficult to extract the shellcode because the code was obfuscated. This is what we can see taking a look at the file account_doc~9345845757.pdf (9cd2118e1a61faf68c37b2fa89fb970c) with peepdf:

It seems that they used the same PDF exploit and they just added the obfuscation, because if we compare the peepdf output for the previous exploits we can see the same number of objects, same number of streams, same object ids, same id for the catalog, etc. After extracting the suspicious object (1) you can spot the shellcode easily, but some modifications are needed:

PPDF> object 1 > object1_output.txt

We can see two “images” encoded with Base64:

And then an interesting array ("bhf"), which seems to contain a shellcode. I say that just guessing, after taking a look at the second pair of characters (EB), a JMP instruction in x86 Assembler:

If we look for references to that array ("bhf") we find this:

var hKrM = Pript1.P6W(Pript1.kQNt1(ezJ.bhf));

The function "kQNt1" converts our array in a unique string of escaped unicode characters, which is then passed as argument to the function "P6W". This other function is defined here:

var P6W = yo(ezJ.rk[2] + ezJ.rk[3] + ezJ.rk[4]); // P6W = eval(“unescape”) = unescape

And the "rk" array contains:

var rk = ["ev", "al", "un", "esc", "ape", "Str", "ing.", "fro", "mCharC", "ode"];

The "yo" function is defined here:

var yo = eval(ezJ.rk[0] + ezJ.rk[1]); // yo = eval

So it is just executing "unescape" with our escaped characters. We can create a Javascript file just containing the "bhf" array and the function "kQNt1" to obtain the result:

function kQNt1(s){
 ...
}
var bhf = ["06eb0000000005...”];
print(kQNt1(bhf));

Then with the result we can use the command js_unescape to obtain the shellcode:

PPDF> set escaped_shellcode "%u06eb%u0000...”
PPDF> js_unescape variable escaped_shellcode

In this case this shellcode contained the following URL and it was downloading an Andromeda sample:

hxxp://88.190.45.44/images/bannier1/Andr.exe (71fe6902d67ac50828fb67d90f09fdd7)

The Andromeda C&C was:

hxxp://disk57.com/gate.php (188.190.117.93)

After two months from this campaign, there was another campaign, dropping Dyre / Dyreza and NewGOZ (new Gameover ZeuS without P2P). In that case there was one more level of obfuscation, the shellcode array was not visible. I mentioned above that there were two “images” encoded with Base64, they contained the ROP offsets and other variables needed for the exploitation. In this new campaign there were two encoded “images” too, but not with Base64 this time, too easy ;p

hCS(sRi(xfa.resolveNode("Image10").rawValue));

Here the function "sRi" is the important one, being "hCS" the "eval" function. The function "sRi" decodes the “images”, but it contains obfuscated variables, so it is a bit annoying performing the static analysis. However, following a bit the execution flow and doing some changes in the code we obtain this clean version:

After decoding the first image we quickly see the shellcode variable again:

And using the js_unescape command:

Resulting in a NewGOZ sample being downloaded from the following URL:

hxxp://kampungnasi.com/111.exe (139aded90404e7566d4ece8ba1ba43aa)

If you want to learn how to do this type of analysis, you can come tomorrow to my workshop at Black Hat Europe (this Friday at 9:00). I will be there two hours demoing different exercises, really practical! ;) How good are you? Check it on Friday! :)

Submitted by jesparza on Thu, 2014/10/16 - 03:53

 #1Submitted by Anonymous (not verified) on Fri, 2014/10/17 - 08:37.

 Hello,
Thanks for the write,

 Hello,

Thanks for the write, but could you share the sample for testing?

 	

 Search this site:

 Vulnerabilities
Black Hat
Python
Malware
Analysis
Tools
Challenge
Botnets
Exploits
Botnet
Feodo
ZeuS
Javascript
PDF
NFC
peepdf
Security
Reversing
Spam
Scripts
Citadel
Tatanga
Fraud
Exploit kits
Shellcode
Mobile
Social Networking
Research
Conferences
Specifications
more tags

 Latest blog posts

 	Dridex spam campaign using PDF as infection vector
	Adding a scoring system in peepdf
	Travelling to the far side of Andromeda at Botconf 2015
	Black Hat Arsenal peepdf challenge solution
	Black Hat Arsenal peepdf challenge
	peepdf news: GitHub, Google Summer of Code and Black Hat
	Andromeda/Gamarue bot loves JSON too (new versions details)
	Quick analysis of the CVE-2013-2729 obfuscated exploits
	Dissecting SmokeLoader (or Yulia's sweet ass proposition)
	Released peepdf v0.3

more

 Security Posts

 	Infocon: green

	News Bender Daily: Un blog de Ciberseguridad e Inteligencia Artificial

	ISC Stormcast For Friday, March 8th, 2024 https://isc.sans.edu/podcastdetail/8886, (Fri, Mar 8th)

	MacOS Patches (and Safari, TVOS, VisionOS, WatchOS), (Fri, Mar 8th)

	Attack wrangles thousands of web users into a password-cracking botnet

	You’re going to start seeing more tax-related spam, but remember, that doesn’t actually mean there’s more spam

	US gov’t announces arrest of former Google engineer for alleged AI trade secret theft

	The 3 most common post-compromise tactics on network infrastructure

	[Guest Diary] AWS Deployment Risks - Configuration and Credential File Targeting, (Thu, Mar 7th)

	Securing AI

	Overview of Content Published in February

	Cybersecurity Concerns for Ancillary Strength Control Subsystems

	Update on Naked Security

	

	

	

	

	

	

	

more

